FM Geometry Vocabulary/Properties/Postulates/Theorems for Chapter 6

The Exterior Angle of a Triangle	The measure of an exterior angle of a triangle is greater
Inequality Theorem:	than the measures of either remote interior angle.

- Thrm: If one side of a triangle is longer than a second side, then the angle opposite the first side is larger than the angle opposite the second side. [Longer side \rightarrow Larger angle]
- Thrm: If one angle of a triangle is larger than a second angle, then the side opposite the first angle is longer than the side opposite the second angle. [Larger angle \rightarrow Longer side]
- The Triangle Inequality: The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given two lengths of a triangle (a and b), the possible lengths for the third side(x) are given by the following compound inequality.

$$|a-b| < x < a+b$$

FM Geometry Vocabulary/Properties/Postulates/Theorems for Chapter 7

Ratio	Proportion	Means	Extremes
-------	------------	-------	----------

Properties of Proportions:

If $\frac{a}{b} = \frac{c}{d}$, then the following a	re also true.				
a. $ad = bc$ b. $\frac{a}{c} =$	$=\frac{b}{d}$ c. $\frac{b}{a}=\frac{d}{c}$	d. $\frac{a+b}{b} = \frac{c+d}{d}$			
If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, then $\frac{a+c+e+\dots}{b+d+f+\dots} = \frac{a}{b}$.					
Similar Polygo	ns Scale	Scale Factor			
AA Similarity Postulate	SAS Similarity Theorem	SSS Similarity Theorem			
Triangle Proportionality Thrm: If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.					
Proportional Transversal Thrm: If three parallel lines intersect two transversals, then they divide the transversals proportionally.					
Triangle Angle-Bisector Thrm: If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.					